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Abstract. In order to analyze or better develop modern computer games
it is critical to have an appropriate representation framework. In this
paper a symbolic representation of modern computer narratives is de-
scribed, and related to a general model of operational behaviour. The
resulting structure can then be used to verify desirable properties, or as
the basis for a narrative development system.

1 Introduction and Overview

In order to analyze or better develop modern computer games it is critical to have
an appropriate representation framework. Existing frameworks are demonstrably
inadequate in this respect. In this paper a symbolic representation of modern
computer narratives is described, and related to a general model of operational
behaviour. The resulting structure can then be used to verify desirable properties
of computer narratives, or as the basis for a narrative development system.

1.1 Motivation

Many modern computer games build gameplay based to varying degrees on
computer narrative—game progression is defined through a narrative sequence
of events. For some genres, particularly “adventure” and to a slightly lesser
extent “role-playing” games (RPGs), the gameplay consists almost entirely of
building/following a narrative, and a properly-constructed narrative structure is
paramount.

As any avid game player is aware, narrative development is an imperfect
process; mistakes are evident in unsatisfying plot holes and non-sequiturs. More
severe consequences can include unwinnable situations, game unbalancing ef-
fects, or even program failure. A rigorous system for developing and describing
narratives can aid in reducing or eliminating these problems.

1.2 Narratives and Graphs

In its simplest form, a narrative is a sequential presentation of events. States,
important points or actions are necessarily described in order over the time of



presentation—a linear plot graph, for example. In this sense a narrative is a total
ordering of events.

However, the presentation of a narrative is often regarded as secondary to
its internal semantics. While all narratives will unfold sequentially over time,
most people understand the events to be “actually” ordered by one or more
internally-consistent ordering frameworks. Internal, narrative time, for instance,
can allow for two events to occur concurrently (“meanwhile. . .”); the relating of
these two events is then an interleaving of the narrative’s necessary ordering.

Plot DAGs Internal order-relations, such as narrative time or physical causal-
ity, produce a “plot DAG” (Directed Acyclic Graph). The plot DAG is a graph
representation of the significant events/states in a narrative ordered by the in-
ternal system: each node represents a state, and directed edges between nodes
represent necessary precedence. Since events in a traditional narrative do not
repeat, the overall structure is acyclic. A simple example for the ubiquitous door
locking “puzzle” found in adventure and RPG games is shown in figure 1.

has key door locked

door unlocked

Fig. 1. A DAG structure describing a simple open door task. Multiple incoming edges
form an “AND” relation—the door must be locked and the key possessed before it can
be unlocked.

The above example illustrates a fundamental representation gap: in the plot
DAG model, the door cannot be (infinitely) unlocked and re-locked, since that
would imply a cycle. Narratives in computer games also tend to incorporate
at least some amount of choice, and this is also not representable in the DAG
system. Incoming edges in our plot DAG are combined as an “AND” relation, and
so we cannot represent the possibility of the door perhaps also being unlocked
by picking the lock. In a typical usage, the designer may avoid these issues by
including this information as side-notes to their design, or they may attempt to
abstract further (collapse the entire situation to just “get door unlocked”). With
such limitations, however, plot DAGs are clearly an unsatisfying solution to the
problem of representing computer narratives.

1.3 Roadmap

Section 2 discusses related approaches. Section 3 begins the presentation of our
formalism. The initial, petri-net derivation is explained in subsection 3.1, and



developed into a hypergraph model in subsection 3.2. The final structure, along
with path and other dynamic actions is defined in subsection 3.3.

Section 4 discusses the use of this formalism for discovering various proper-
ties important to narrative development. The model is then applied to a more
complex example in section 5, where we show how our model and approach can
be used to describe the initial portion of an actual computer narrative. Direc-
tions for further research are then discussed in section 6, and conclusions drawn
in section 7.

2 Related Work

There are remarkedly few academic computer science studies of modern com-
puter games, and we are aware of no other formal attempts at representing com-
puter game narratives. The concept of plot DAGs as a design tool for narrative
computer games was discussed during the mid-1990’s in the usenet discussion
group rec.arts.int-fiction [BLM+94,OE94,BPA+95] and in an on-line trade
journal [For97]. The idea is sometimes credited to the “Oz” group’s work on in-
teractive drama [Mat97]. Of course with DAG models cycles and choice cannot
be represented, and must be attached as external information.

Approaches to analyzing text narratives, however, do exist. For example,
Burg et al use constraint logic programming to analyze time-relations in a
William Faulkner short story [BBL00]. High-level narrative development frame-
works have been described by Strohecker and Brooks [Bro96,Bro97,Str97]; these
systems are aimed at all aspects of (perhaps interactive) story development, and
not the specifics of representation.

Low-level game “construction kits” also exist, automating the repetitive
and/or stock tasks necessary to actually produce a working computer game.
These are also typically not representation-oriented; the popular TADS [Rob87]
system, for instance, represents narrative implicitly through the control structure
of a high-level object-oriented language.

Our hypergraph model is derived by simplifying a form of Petri Net. Similar
Petri Net models have been used in modelling “workflow,” the abstract relations
and precedence requirements of tasks in a business environment [vdA98]. Van der
Aalst’s workflow model is based on an enrichment of Petri Nets (transitions are
augmented by the source of the firing impetus), and naturally does not discuss
or define properties important to narratives per se.

3 Formalisms

Our interest is in a simple formalism that can model normal narrative progres-
sion (internal-dependencies), including cycles and choice. To keep our formalism
simple, we do not attempt to explicitly model time1. Mechanics of player inter-

1 E.g., a game action which must be completed in a specific real-time interval: “you
have 30 seconds to defuse the bomb...”. Real-time activities do occasionally appear



action (how actions and choices are actually presented and resolved) and other
extra-narrative facets are also not considered.

The model we develop is derived from a form of Petri Net. The next subsec-
tion gives a quick introduction to Petri Nets, and is followed by an explication
of our system.

3.1 Petri Nets

Definition 1. A Petri Net is a 5-tuple, (P, T, E, W, M), where P is a set of
place nodes, T is a disjoint set of transition nodes (P ∩ T = φ), and E ⊆
(P ×T )∪ (T ×P ) is a set of directed edges going between places and transitions.
Edges are weighted (W : E →

�
), as are places via a “marking” or token-

assignation function (M : P →
�
∪ {0}).

Central to the model is the concept of a transition-node being “ready to fire,”
and the marking transformation that occurs through actual firing. In order for
transition t to be ready to fire, there must be enough tokens in each incoming
place p to satisfy the edges weights: W ((p, t)) ≤ M(p). Actual firing conceptually
removes tokens from the incoming places according to edge weights, and adds
tokens to outgoing places according to edge weights. Note that firing is atomic;
substeps in the firing of one transition cannot be interleaved with other transition
firings. Also note that a place attached as both input and output to a firing
transition will have its marking changed according to the difference between
output weights and input weights.

Definition 2. A 1-Safe Petri Net has edge weights of 1 in all cases, ∀(x, y) ∈
E, W ((x, y)) = 1, and guarantees that markings are always either 1 or 0. If

M0

t0−→ M1

t1−→ . . . is a sequence of markings generated by firing transitions
t0, t1, . . ., then:

∀i ≥ 0, ∀p ∈ P, Mi(p) ∈ {0, 1}.
A variation on 1-Safe firing rules further requires all output places of a transi-

tion to be empty in order for it to fire. This does not affect expressive power, and
for simplicity we will sometimes illustrate based on firing rules of either form.
We will, however, explicity permit self-loops, and also assume that our nets are
“T -restricted”—transitions do not map from or to empty place sets. The reader
is referred to other texts (e.g., [Rei88]) for more comprehensive introductions to
Petri Nets.

1-Safe Petri Nets model finite state systems, and are sufficient to represent
all narrative structures in which we are interested (formal expressiveness results
can be found, e.g., in [CEP95,Esp98]). For instance, an expanded version of the
simple lock “puzzle,” discussed in Section 1.2 is illustrated as a Petri Net in
Figure 2. Transitions are drawn as small lines, places as circles and the marking
by the presence/absence of a black dot in each place. To unlock the door, the

in computer narratives, but at least in narrative-centric games like adventure games,
real-time situations are not well-liked [Ada98].



door must be currently locked and the key has to be available; firing the “Unlock
door” transition changes the door state to “door unlocked,” but does not affect
the presence of the key.

"Pick open"

door unlocked door locked

"Unlock door"

has key

"Lock door"

Fig. 2. A 1-safe Petri Net describing a simple lock “puzzle” in a narrative.

Note that as opposed to the DAG example in Figure 1, here the unlocking
of the door is reversible—the graph is cyclic. Choice has also been incorporated;
the lock is (un)lockable with the key, or it can be unlocked by picking the lock
(firing the transition labelled “Pick open”).

A Petri Net representation is quite flexible, and allows one to model more
complex behaviours than a plot DAG. However, the bipartite structure and
complex transition (firing) behaviour of Petri Nets adds unnecessary syntactic
baggage to our model. In Figure 2, for instance, edges from the lock/unlock
transitions are needed to restore the token within the “has key” place—this
represents the fact that (un)locking the door does not alter the possession of the
key. In essence, the “has key” place functions here not as a transformable state,
but as required context for other actions. The next section introduces a simplified
representation that formalizes our requirements without requiring explicit token
movement.

3.2 Hypergraphs

Our formalism is based on a 1-safe Petri Nets, and is a kind of directed hyper-
graph:

Definition 3. A hypergraph is a graph (V, E), with the property that edges
(hyperedges) can connect more than just 2 vertices: E ⊆ P(V ).

Definition 4. A directed hypergraph is a directed graph (V, E), with the prop-
erty that (hyper)edges can connect more than one tail vertex to more than one
head vertex: E ⊆ (P(V ) × P(V )). The tail : E → P(V ) and head : E → P(V )
functions extract the input or output sets from a given hyperedge.



A directed graph has directionality assigned to each connection between a
hyperedge and a vertex; note that some authors define a directed hypergraph
by designating a single, distinct head for each hyperedge: E ⊆ (P(V )×V ) (e.g.,
see [AIN92]); we are not following that pattern.

Directed hypergraphs can model the structure of 1-Safe Petri Nets: a corre-
spondence can be built between transitions and hyperedges, and nodes can be
identified. A restriction exists in that multiple, identical Petri Net transitions (ie
transitions with the same input and output place sets) cannot be represented;
this does not affect expressive power. Note that every directed hypergraph can
be trivially transformed into a 1-Safe Petri Net if we assume the variant firing
rules discussed in subsection 3.1.

In order to model narratives succinctly, nodes that are both source and tar-
get of a hyperedge, contexts for other actions, should be abstracted out. This
motivates the context hypergraph as a labelled, restricted variation of a directed
hypergraph.

Definition 5. A context hypergraph is a 6-tuple, (V, E, C, L, LV , LE) where:

(V, E) forms a directed hypergraph with the property ∀h ∈ E, head(h) ∩
tail(h) = φ.

C ⊆ (E ×P(V)) is such that (h, N) ∈ C ⇒ ∀n ∈ N, n ∈ tail(h).
L is a finite set of labels.
LV : V → L is a node labelling function.
LE : E → L is a hyperedge labelling function.

Remarks: A context hypergraph distinguishes nodes that function as con-
text connections between a hyperedge h and some subset of tail(h). In the base
hypergraph these are simple tail connections for a hyperedge; by identifying
them with the C relation it becomes possible to use them for context purposes.
An example is shown in figure 3.

"Pick open"

door unlocked door locked

"Lock door" "Unlock door"

has key

Fig. 3. A context hypergraph model of the same structure as figure 2. Context relations
are marked by a line with two short lines intersecting it (eg, the two lines connected
to the “has key node”).



3.3 Narrative Flow Graphs

Context hypergraphs form the syntactic basis for our model. We still need the
concept of starting and ending nodes, and of course we need algorithms for
discovering interesting and useful properties of our system. A simple context
hypergraph is not yet sufficient for this. The Narrative Flow Graph defines the
final representation.

Definition 6. A Narrative Flow Graph (NFG) is a 4-tuple: (H, a, w, `), where
H = (V, E, C, L, Lv, Le) is a context hypergraph, a ∈ V is an identified starting,
source node with no context connectivity:

∀h ∈ E, a 6∈ head(h) ∧ ∀(h, N) ∈ C, a 6∈ N
and w, ` ∈ V (w, ` 6= a) are identified ending, sink nodes:

∀h ∈ E, w, ` 6∈ tail(h)
The w and ` nodes must not be simultaneously-reachable:

∀h ∈ E, |{w, `} ∩ head(h)| ≤ 1

Remarks: The addition of specific starting and ending nodes allows for
paths to be defined in the structure. The initial node, a represents axiomatic
precedence—all initial conditions are directly connected to a. Symmetrically, w
and ` represent termination, either by winning or losing respectively. The final
condition above ensures that a specific hyperedge does not lead to both win and
lose at the same time.

For narrative games, the concept of winning and losing is important. For
narratives per se, however, termination remains critical, but the distinction be-
tween winning and losing is unnecessary. In these cases w and ` can be equated,
producing a simplified NFG:

Definition 7. A Simple Narrative Flow Graph is an NFG (H, a, w, `) such that
w = `.

The lock example is extended to a simple NFG in figure 4.

Remarks on the Formalism NFGs are a simplified representation of a partic-
ular form of 1-safe Petri Net. The advantage of this formalism is in its specificity
to the task—through designated nodes and connectivity constraints NFGs for-
malize a general structure appropriate for narrative representation. There is an
additional minor benefit in the representation of self-loops: ambiguity as to the
readiness of such a transition in a 1-safe Petri Net (when not explicitly specified)
is eliminated when viewed as a context in an NFG. Note that these differences
do not alter the close relation to Petri Nets, and so results in that area remain
trivial to transfer.

3.4 Traversals

In a regular graph, a path or traversal can be represented as an alternating
sequence of nodes and edges, terminating at a destination node. A simple path
is a path without any cycles (repeated nodes).



door unlocked door locked

"Unlock door""Lock door"

has key

"Pick open"

End

Axiom

Fig. 4. A simple NFG of the same structure as figure 3. The “game” begins with the
door locked and the key available. Once the door is unlocked (either by using the key
or by picking), the door can be re-locked, or the game can end. There is no win or lose
in this game, just termination.

For hypergraphs, due to the branching of hyperedges, traversal is more com-
plicated, and (following [AIN92]) simple paths are most easily represented as
minimal sub-hypergraphs connecting two sets of vertices. For example, in fig-
ure 4, one minimal hyperpath from {Axiom} to {End} would include nodes
{Axiom, door-locked, door-unlocked, has key}, along with the Unlock

door, axiomatic, and terminal hyperedges.

While we can define traversals using hyperpaths, it may not be that a given
hyperpath is a realisable traversal—due to their Petri Net origins, there is an
implicit, necessary ordering in a traversal of our hypergraphs, and this is lost
in a sub-hypergraph representation. In figure 5, for instance, a sub-hypergraph
representing a traversal from A to E is shown (as is its Petri Net equivalent).
The version on the left, however, is not actually realisable as a game—C is
required for X , but it is also required for E. Context relations exist to permit
such paths; the version on the right connects C to X using a context edge, akin
to a bidirectional connection to a transition in a Petri Net, and so there is no
difficulty in revisiting C before moving to E.

In order to verify path-based properties in our model, then, a simple sub-
hypergraph model of traversal is insufficient. We need to consider the (non)exist-
ence of contexts. This is captured through the following definition of flow:

Definition 8. Let H = (V, E, C, L, Lv, Le) be a context hypergraph, and let
X, Y, Q ⊆ V be non-empty subsets of nodes. Let EQ→Y ⊆ E be a set of hy-
peredges between Q and Y :

h ∈ EQ→Y ⇒ tail(h) ⊆ Q ∧ head(h) ⊆ Y
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Fig. 5. Two small hypergraphs and their Petri Net equivalents. Graph a) does not
represent a realisable path—in order to reach X a traversal must pass through C, but
having done so, since C is also required for E, E cannot be reached. This is reflected
in the Petri Net equivalent, c), where no sequence of firings will result in a token in
the E place. In graph b), C is connected to X using a context relation; this does not
“consume” C and so the path is realisable; it’s Petri Net equivalent, d), can clearly
have transitions fired to put a token in E.

There is a flow (X, Y ) representing a realisable traversal from X to Y if either
X = Y , or if there exists a flow (X, Q) and a non-empty EQ→Y ⊆ E such that:

1. ∀q ∈ (Q/Y ), ∃h ∈ EQ→Y . q ∈ tail(h), and
∀y ∈ Y, y ∈ Q ∨ ∃h ∈ EQ→Y . y ∈ head(h)

2. For each q ∈ Q, let Eq = {h ∈ EQ→Y .q ∈ tail(h)}.
Let Eq/C = {h ∈ Eq. ∃(h, {q} ∪ N) ∈ C}. Then |Eq| − |Eq/C | ≤ 1, and if
q ∈ Y then |Eq| − |Eq/C | = 0.

3. For each h1, h2 ∈ EQ→Y , head(h1) ∩ head(h2) = φ, and
for each h ∈ EQ→Y , head(h) ∩ Q = φ.

Note that given a pair of node sets (X, Y ), there may be many possible flows
from X to Y . In such cases it is convenient to describe a flow by unfolding it as
sequences of node sets, (X = X0, X1, . . . , Xn = Y ) for some finite or infinite n.



Remarks: Flows are defined recursively, between two sets of nodes. Con-
dition 1 of definition 8 ensures that a flow progresses by following hyperedges.
Condition 2 shows the underlying Petri Net semantics: a particular node can be
“used” at most once to progress to the next node set, and all other uses must
be defined as context uses. If a particular node actually remains in a node set,
then all uses must be context uses. Condition 3 guarantees 1-Safety.

Despite the apparent complexity of its specification, this is a relatively simple
condition to recognize (or compute). In figure 5 b), for instance, the node sets
involved in a flow between A and E would {A}, {B,C}, {C,X}, {E}. Sequences
of node sets forming flows are analogous to sequences of Petri Net markings
forming reachable states.

It will also be useful to have a notion of the “distance” between two node
sets forming two ends of a flow. This notion is dependent on avoiding cycles, and
hence is developed through the following definitions:

Definition 9. A flow (X, Y ) unfolded as (X = X0, X1, . . . , Xn = Y ), n ≥ 0
is simple if it does not contain any cycles: ∀i 6= j, Xi 6= Xj. If each set of
hyperedges between node sets consists of exactly one hyperedge: |EXi→Xi+1

| = 1,
then the flow is sequential.

Definition 10. Let F = (X = X0, X1, . . . , Xn = Y ), n ≥ 0 be a finite, simple
flow. Then F has length n, expressed |F | = n.

Remarks: Note that not all length 1 flows may be performed in a game as
atomic or single actions—in our definition a length 1 flow may be comprised of
concurrently following many independent hyperedges. Sequential length 1 flows,
however, do indeed always follow one hyperedge.

Length is defined by the particular flow between two node sets. Since there
may be many ways of reaching Y from X , it is not by itself sufficient to de-
scribe the “distance” between these node sets. The following definitions supply
terminology for describing both minimal and maximal distances.

Definition 11. Given a pair of node sets, (X, Y ) and an NFG, N , the distance
from X to Y , expressed DN(X, Y ), is the smallest length over all possible simple
flows in N between X and any Y ′, where Y ⊆ Y ′. The sequential distance,
expressed dN (X, Y ) is the smallest sequential length over all possible simple flows
between X and Y ′.

Definition 12. Given a pair of node sets, (X, Y ) and an NFG, N , the separa-
tion between X and Y , expressed sN (X, Y ), is the length of the largest simple
flow (X = X0, X1, . . . , Xn) such that ∀i ≤ n, Xi ∩ Y = φ. Separation is always
sequential.

4 Narrative Properties

NFGs can be used as a design tool to describe narratives; section 5 illustrates
such a usage. Narratives, however, must also satisfy semantic properties that



are not necessarily trivially apparent in every syntactically-correct NFG. Below
some interesting properties and associated analysis/verification strategies are
discussed.

4.1 Pointlessness

In some narrative games there is the possibility of the game persisting after the
player has performed actions that make the game as a whole unwinnable. For
example, in the adventure game The Hitchhiker’s Guide to the Galaxy, “...if you
didn’t pick up the junk mail at the very beginning of the game, it was unwinnable
at the very end.” [Ada98]. Since these games usually take considerable time to
play through (often on a scale of days to weeks) such problems can be particularly
vexing for players.

Ensuring a narrative reaches Lose quickly if it cannot reach Win is a de-
sireable narrative property. This can be viewed as a form of reachability or
path-length problem in the NFG formalism; below it is expressed in terms of
separation.

Definition 13. An NFG N = (H, a, w, `) is p-pointless if for all flows ({a}, F ),
either there exists a flow (F, {w} ∪ Z) for some Z, or sN (F, {`}) ≤ p

Remarks: The parameter p defines how “quickly” one must reach the Lose

state if the game is not winnable. A small value of p ensures a quick termination
of a failed game.

Verifying this property in general involves determining reachability, a well-
considered problem in Petri Nets [Esp98]. There are a variety of efficient solutions
available; e.g. [PCP99].

4.2 Narrative Progress

It is possible to build a simple semantics for a DAG-based model by describing
narrative progression as following a partial order on DAG subgraphs. A sub-
graph ordering, however, is too coarse for our purposes; first, it does not allow
us to distinguish between progression towards the win as opposed to the lose
nodes (and vice versa); second, two identical subgraphs, equated in a subgraph
ordering, may not be at all equivalent with respect to reaching a goal due to the
flow mechanics.

Instead, we base our semantic interpretation of movement through a narrative
on the state space of the NFGs and flows.

Definition 14. Given an NFG, N = ((V, E, C, L, Lv, Le), a, w, `), and two node
sets X, Y ⊆ V , we define (N, X) ≤w (N, Y ) iff dN (X, {w}) ≤ dN (Y, {w}).

Remarks: This is trivially a partial order: reflexive, transitive, and anti-
symmetric. Distance is defined as the length of the shortest flow from a given
node set to any superset of the target set. For NFGs, reaching the win state (w)
is most important, and so our partial order is based on the distance to the w



node. Of course other orderings based on reaching other states are possible; e.g.,
a lose ordering: “≤`”.

A partial ordering allows logical positions within a narrative to be compared:
is player 1 “ahead of” player 2? Particular “actions” (flows of length 1) can also
be categorized: actions forming increasing functions in this domain are known
to increase the proximity to narrative conclusion.

5 An Extended Example

The examples presented so far are of a simple nature. In this section, the ini-
tial portion of an old, but nevertheless paradigmatic narrative-based computer
game is described: “The Count,” one of the well-known Scott Adams adventure
games [Ada]. Note that although resource constraints prevent discussion of the
entire game, these initial scenes illustrate non-trivial narrative requirements.

5.1 Game Introduction

This game, and indeed all the Scott Adams games, function in discrete time
steps furthered by user interaction. At each time step the player is presented
with a command line, which allows the player to (potentially) perform a nar-
rative movement. Like many computer narratives, The Count is a first-person
narrative, where the player is conceptually one of the game characters, and hence
is modelled as one of the game objects.

Narrative Flow Graph Model Since there are many subtasks and many po-
tential player actions, the actual NFG is both large and non-planar. We do not
address graph drawing concerns in this paper, and so use an ad hoc graph struc-
turing to organize and present the model. Also note that the particular structure
we present is only one system for doing so—our presentation was developed ex-
perimentally, and we do not claim it is canonical in any way. Equivalence of
different models is a non-trivial topic reserved for future work.

At least one node is defined for each object. Important objects in this example
include you (the player), a sheet, and the end of the sheet (logically separate
from the sheet); these are abbreviated in diagrams as Y, S, and E respectively.
There are of course many other objects in the game; the majority, though are
not important to the initial scenes, and so are not modelled here.

The state space of an object often includes its location within the game.
Thus each object is represented by several mutually-exclusive states indicating
its logical location in the game (which room it resides in). Relevant “rooms”
in this example include the bed (starting location), the bedroom, the window
ledge and the hall, as well as the player inventory. These are abbreviated B, Br,

L, H, and I. Further state divisions of objects will be introduced as required.
Also note that not all object-room combinations are allowable states (eg, Y-I is
nonsensical).



Application of location states for objects can be seen in the effects of the
user take and drop actions. These require the player to be in the same location
or for the object to be in the inventory; example NFG fragments are shown in
figure 6. There will be such a substructure required for each place from or to
which each object can be moved.

S−B Y−B

S−I

Y−BS−I

S−B

take drop

Fig. 6. NFG structure for representing effect of take and drop actions. On the left,
while the player and the sheet are in the bed it is possible to move the sheet into the
inventory. On the right is the symmetric situation—the sheet can be dropped into the
bed provided it is in the inventory, and the player is also in the bed. Notice the context
connection to Y-B in each case—taking or dropping an item does not affect the players
location.

5.2 Game Tasks

Tasks within the game are basically organized according to location. Thus, as
in the take and drop examples, the Y-B, Y-Br, Y-H, and Y-L nodes will
frequently be required context connections when representing state transforma-
tions. In the sections below, the tasks and state space available in two rooms are
described.

The player begins lying in bed. Not surprisingly, the bed also contains the
sheet (the complete set of connections to the axiom would also include the intial
states of all objects, in all rooms). A portion of the initial game situation is
illustrated in figure 7.

The Bed The bedroom does not contain complex tasks. The only possibilities
are to take or put objects here, and for the player to get up. One further pos-
sibility is to sleep. Sleeping three times terminates the game as a loss (player
turns into a vampire). Note that sleeping in any room includes an immediate
movement back to the bed; this can be easily modelled, but is not shown in
figure 8.

The Bedroom The bedroom is by far the more complex of the rooms in this
example. As well as the state of objects already mentioned, the room itself



S−B

Axiom

Y−B

Fig. 7. Initial configuration of the extended example.

Y−B

get up

Y−Br

Y−B S0

S1

S2lose sleep

Fig. 8. Bed fragment. Here the player can “get up” and move out of the bed into the
bedroom (left fragment), or they can sleep (right fragment). Having slept 3 times, they
lose; in order to track this, 3 different “having slept” states are required (S0, S1, S2).
This could also have been modelled by separate sleep actions, as opposed to sleep state
nodes.

contains a window, which can be in open (Wo) or closed (Wc) state (initially
closed). Figure 9 shows an NFG fragment for opening/closing the window and
moving out to the ledge through the open window.

Y−Br WcWo

Y−L

Y−Br Wo

go window opening or closing the window

Fig. 9. Bedroom fragment. On the left is a structure allowing moving from the bedroom
to the ledge, provided the window is open. On the right the window can be opened or
closed.



A more complex state structure is in the way the sheet and the bed interact.
It is possible to tie the sheet to the bed; this transforms the bed (Be) into one
with a sheet tied to it (Bs), and creates the end-of-the-sheet object (E) in place
of the sheet. The end can then (later) be used as a makeshift rope when on the
ledge, through the open window. Tying the sheet can be done whether the sheet
is in the bedroom itself, or in the player’s inventory (a multi-room context)—see
figure 10 .

Y−Br Bs

BeS−Br

E−I

Bs

S−I BeY−Br

E−Br

tie sheet to bed − sheet in inventory

Bs

BeY−Br

E−Br

S−Br

tie sheet to bed − sheet in bedroom

Y−BrE−Br Bs

BeS−Br

untie sheet − end in bedroom untie sheet − end in inventory

Fig. 10. Tying (top) and untying (bottom) the sheet. Tying can only be done in the
bedroom, provided the sheet is in the inventory or bedroom itself. Untying is more
complex and not all situations are shown; the sheet can be untied only when you are
in the bedroom (Y-Br as context), but the end (E) can be in the bedroom, bed, ledge
or inventory. This can be handled by further structures like the bottom two.

Further complexity is evident in how the tied sheet acts if certain other ac-
tions are taken. If the player takes the end of the sheet and ventures into the hall
the sheet becomes “untied,” restoring the sheet into the players inventory. This
situation is shown in figure 11. As well, if the player sleeps, the tied sheet resets
in a similar fashion (though the sheet appears in the bed, not the inventory);
this is not shown in figure 8.

5.3 Counting Time

Although we have explicitly excluded the modelling of real time, there are several
narrative events based on counting. For instance, after 29 moves, a door-bell



BsY−Br

Y−H Be S−I

E−I

sheet resets if you leave with the end

Y−Br Be

Y−H

Y−Br Bs E−Br

Y−H

leaving without the sheet tied leaving without the end

Fig. 11. Leaving the bedroom for the hall. If the sheet is not tied, the movement is
straightforward (upper left). If the sheet is tied but the end is not in the inventory,
it remains behind (upper right; this requires several similar structures replacing E-Br

with E-B and E-L). If the end of the sheet is in the inventory, the sheet becomes
untied, and the end is replaced by the original sheet.

rings elsewhere in the castle. After 64 turns the sun sets, and the player finds
themselves back in bed the next morning (as if they’d slept). Static counts such
as these can be explicitly modelled in our formalism by the appropriate number
of state nodes, as we show for the sleep count (figure 8), or less-explicitly as
a non-deterministic connection between normal behaviour and the post-count
behaviour.

5.4 Pointlessness

The game fragment presented does not have a conclusive narrative goal. By
adding winning and losing conditions, it becomes possible to discuss how p-
pointless the narrative is. For example, figure 12 defines a win if the edge of the
sheet is left on the ledge, and a lose if you go to the ledge without the sheet tied
at all.

With this configuration, the aggregate NFG is 1-pointless—it is always pos-
sible to reach Win, unless in a condition where losing is the only possible action.
The actual game would have a p-pointless value larger than 1, since sleep (also
leading to Lose) is forced at several points, potentially leaving insufficient moves
available to reach Win.



Y−LE−LY−L Be

win lose

Fig. 12. Artificial winning and losing conditions. Dropping the sheet end on the ledge
is a win; being there without having tied it at all is a loss. Other graph fragments allow
for movement from the ledge back to the bedroom if neither condition is true.

6 Future Work

A number of issues remain to be addressed. Our formalism is an attempt to
provide an initial infrastructure for narrative modelling and analysis; further
analysis of complex computer narratives will expand and tune this model.

Further investigation of other formalisms, including variant forms of Petri
Net (e.g., coloured and/or timed Petri Nets) is warranted. 1-safe Petri Nets
can easily express the simple precedence relations (including cycles and choice)
that form basic computer narratives; other formalisms, however, may allow for
the expression of concepts more efficiently (e.g., counting), or which cannot be
expressed at all in our formalism (e.g., real-time counters). The increase in com-
plexity of such representations would have to be balanced against other factors,
including readability and representative modularity/cohesion—any expansions
of the model should be careful to avoid encompassing more than just the game
narrative.

The NFG fragments illustrated in section 5 comprise a very small portion of
the game. While these initial scenes are as complex as any subsequent scene, it
is clearly more compelling to demonstrate the ability to represent and analyze a
complete narrative.

The examination or use of larger examples raises other issues as well. An
entire game would result in a very large, complex graph, and actively using such a
graph for narrative development would be awkward for a human being. A higher-
level environment automating many of the repetitive aspects of the formalism
(eg implicitly modelling take/drop actions etc) is desireable for practical use.

An aspect we are actively working on is the overall semantics induced by
narratives. In section 4 some interesting narrative properties were discussed,
and a partial order semantics introduced. We are developing these ideas further,
investigating how various game actions and potential playability problems or
goals may be understood within a semantic framework.

7 Conclusions

Traditional, text narratives can be simply represented through a straightforward
DAG structure. Narratives in computer games, however, require a more complex



presentation system, including the ability to represent both cycles and narrative
choice, two things that are not possible with a DAG format.

In this paper we presented an alternative representation framework, Narra-
tive Flow Graphs, derived from a limited form of Petri Net. This framework
addresses the existing representation gap, while providing a syntactically simple
narrative description format. Using this format, we defined some simple prop-
erties pertinent to narrative development, and demonstrated the application of
our formalism to a realistic example.
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